Sunday, November 20, 2016

PHOTOCOPIER MACHINE




There are plenty of machines in each office nowadays – laptops, desk computers, lamps, printers, faxes, tablets, photocopiers, smart phones. All of these are suited for our needs and easy to work with, but the technology behind them is sometimes unknown.

Today let us throw some light on one of the most common machines used worldwide i.e. photocopier machine.

Photocopying is a process which makes paper copies of documents and other visual images quickly and cheaply.

It was introduced by Xerox in the 1960s, and over the following 20 years it gradually replaced copies made by carbon paper, mimeograph machines and other duplicating machines.

Chester Carlson, the inventor of photocopying, was originally a patent attorney and part time researcher and inventor. As he worked at his job, he noted that there never seemed to be enough carbon copies of patent specifications, and there seemed to be no quick or practical way of getting more. The choices were limited to sending for expensive photo copies, or having the documents retyped and then reread for errors.

Carlson was frustrated from painful attacks of arthritis. He found this a painful and tedious process. This prompted him to conduct experiments in the area of photoconductivity, through which multiple copies could be made with minimal effort.








Carlson decided to dip into his meagre resources to pursue his research. He set up a small lab in nearby Astoria and hired an unemployed young physicist, a German refugee named Otto Kornei, to help with the lab work.

It was here, in a rented second-floor room above a bar, where xerography was invented.


This is Carlson's account of that moment: "I went to the lab that day and Otto had a freshly-prepared sulfur coating on a zinc plate. We tried to see what we could do toward making a visible image. Otto took a glass microscope slide and printed on it in India ink the notation '10-22-38 ASTORIA.' We pulled down the shade to make the room as dark as possible, then he rubbed the sulfur surface vigorously with a handkerchief to apply an electrostatic charge, laid the slide on the surface and placed the combination under a bright incandescent lamp for a few seconds. The slide was then removed and lycopodium powder was sprinkled on the sulfur surface. By gently blowing on the surface, all the loose powder was removed and there was left on the surface a near-perfect duplicate in powder of the notation which had been printed on the glass slide”. 



This process was repeated several times to convince that it was true, then they made some permanent copies by transferring the powder images to wax paper and heating the sheets to melt the wax.

Carlson tried to sell his invention to some companies, but because the process was still underdeveloped he failed.

From 1939 to 1944, he was turned down by more than twenty companies. Even the National Inventors Council dismissed his work. How difficult it was to convince anyone that tiny plates and rough image held the key to a tremendous new industry. The years went by without a serious nibble. Carlson became discouraged and several times decided to drop the idea completely. But each time he returned to try again.

Finally, in 1944, Battelle Memorial Institute, a non-profit research organization, in Columbus, Ohio, became interested, signed a royalty-sharing contract with Carlson, and began to develop the process.

In 1947 Haloid, a small New York based organisation manufacturing and selling photographic paper at that time, approached Battelle to obtain a license to develop and market a copying machine based on this technology. Battelle entered into an agreement with Haloid (later to be known as Xerox), giving Haloid the right to develop a xerographic machine.

In 1955, Haloid - by then Haloid Xerox - produced Copyflo, the first automated xerographic machine. It produced enlarged prints on a continuous roll from microfilm originals, and spawned a line of Xerox microsystems products which are still turning significant profits. Copyflo was also the first product to use a drum, instead of a plate, as the photoconductive surface. The rotating drum, an ingenious solution to the problem of how to make copies quickly, has been used again and again in Xerox machines.



However, it wasn't until 22 years after electro photography had first been conceived that the first true office copier was produced. In 1958, the introduction of the first-ever commercial push button photocopier machine Model the “Xerox 914” turned into success. It was called ‘914’ because it could handle paper legal size paper which is 9 inches x 14 inches in size. The success of “Xerox 914” was so huge that the company changes its name to Haloid Xerox in 1958.

The name was chosen based on the unique dry printing technique, and shortened to follow the model set by the other big company at the time – Kodak. Three years later, another renaming occurred and the company was called simply Xerox.

This was the model that hit it big that by 1965 earned Xerox revenue over $500 million dollars and today Xerox is such a household name that people confuse the name of the company for the process called photocopying!






Friday, November 18, 2016

CALCULATOR



CALCULATOR

Calculation was a need from the early days when it was necessary to account to others for individual or group actions, particularly in relation to maintaining inventories or reconciling finances. Early man counted by means of matching one set of objects with another set (stones and sheep). The operations of addition and subtraction were simply the operations of adding or subtracting groups of objects to the sack of counting stones or pebbles. 

ROMAN ABACUS


In the very beginning, of course was the abacus, a sort of hand operated mechanical calculator using beads on rods, first used by Sumerians and Egyptians around 2000 BC.
The principle was simple, a frame holding a series of rods, with ten sliding beads on each. When all the beads had been slid across the first rod, it was time to move one across on the next, showing the number of tens, and thence to the next rod, showing hundreds, and so on (with the ten beads on the initial row returned to the original position).
John Napier dramatically advances the understanding of number relationships in 1614 with his invention of logarithms. Since logarithms are the foundation on which the slide rule is built, its history rightly begins with him. His early concept of simplifying mathematical calculations through logarithms makes possible the slide rule as we know it today.
Napier himself contributes Napier’s Bones in 1617, calculating sticks based on the geologia (lattice) multiplication method. In 1620 Edmund Gunter of London makes a straight logarithmic scale and performs multiplication and division on it with the use of a set of dividers, or calipers.

CIRCULAR SLIDE RULE


In about 1622 William Oughtred, an Anglican minister ... today recognized as the inventor of the slide rule, places two such scales side by side and slides them to read the distance relationships, thus multiplying and dividing directly. He also develops a circular slide rule.

Real Rocket Scientists used slide rules to send Man to the Moon - a Pickett model N600-ES was taken on the Apollo 13 moon mission in 1970.

The 17th century marked the beginning of the history of mechanical calculators, as it saw the invention of its first machines, including Pascal's calculator. In 1642, Blaise Pascal had invented a machine which he presented as being able to perform computations that were previously thought to be only humanly possible, but he wasn't successful in creating an industry.
Blaise Pascal invented a mechanical calculator with a sophisticated carry mechanism in 1642. After three years of effort and 50 prototypes he introduced his calculator to the public. He built twenty of these machines in the following ten years.This machine could add and subtract two numbers directly and multiply and divide by repetition. Since, unlike Schickard's machine, the Pascaline dials could only rotate in one direction zeroing it after each calculation required the operator to dial in all 9s and then (method of re-zeroing) propagate a carry right through the machine.

STEPPED RECKONER


In 1674, Gottfried Wilhelm Leibniz creates Stepped Reckoner. The device could add, subtract, multiply, and divide.

ARITHOMETER


Thomas’ arithmometer is a mechanical calculating machine designed to perform four basic arithmetical operations: addition, subtraction, multiplication and division. This machine was invented by the Frenchman Thomas de Colmar in 1820. This is the first calculating machine that was commercialized and manufactured in large quantities. The artithmometer practically dominated sales of calculating machines during the second part of 19th century. During all his life Thomas de Colmar was improving it. When he died in 1870, his son Thomas de Bojano, and later engineer Louis Payen, continued improvements and the production. 



A further step forward occurred in 1887 when Dorr. E. Felt’s US-patented key driven ‘Comptometer’ took calculating into the push button age. This machine, too, spurred a host of imitators.

The Curta calculator was developed in 1948 and, although costly, became popular for its portability. This purely mechanical hand-held device could do addition, subtraction, multiplication and division. By the early 1970s electronic pocket calculators ended manufacture of mechanical calculators, although the Curta remains a popular collectable item.



The Curta Calculator, resembling a pepper grinder with numbers, is highly sought after by collectors of slide rules and similar calculating devices. It was produced in two models:
  • Type I -Eight columns of numbers
  • Type II -Eleven columns of numbers
The Curta Calculator came in a can, usually black, two inches in diameter and four inches high. It was manufactured in Liechtenstein (which borders Switzerland).

The first mainframe computers, using firstly vacuum tubes and later transistors in the logic circuits, appeared in the 1940s and 1950s. This technology was to provide a stepping stone to the development of electronic calculators.



The Casio Computer Company, in Japan, released the Model 14-A calculator in 1957, which was the world's first all-electric (relatively) "compact" calculator. It did not use electronic logic but was based on relay technology, and was built into a desk.

Colossus was a specialised machine that basically performed “exclusive or” (XOR) Boolean algorithms.
However, it did this using hundred of thermionic valves as electronic on/off switches, as well as an electronic display.
The application of this technology to the world’s first general calculating computer had to wait until 1946 and the construction of the ENIAC(Electronic Numerical Integrator And Computer) as a completely digital artillery firing table calculator also capable of solving "a large class of numerical problems", including the four basic arithmetical functions.
ENIAC

ENIAC was 1,000 times faster than electro-mechanical computers and could hold a ten-digit decimal number in memory. But to do this required 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. It weighed around 27 tonnes, took up 1800 square feet of floorspace and consumed as much power as a small town. Not exactly a desktop solution.

In 1961, First electronic calculators invented: Anita MK VII and Anita MK8. This was the world’s first all-electronic desktop calculator and it was developed in Britain by Control Systems Ltd., marketed under its Bell Punch and Sumlock brands.

ANITA used the same push button key layout as the company’s mechanical comptometers, but these were the only moving parts. All the rest was done electronically, using a mix of vacuum and cold cathode ‘Dekatron’ counting tubes.
Nevertheless, as the only electronic desktop calculator available, tens of thousands of ANITAs were sold worldwide up to 1964, when three new transistorised competitors appeared; the American Friden 130 series, the Italian IME 84, and the Sharp Compet CS10A from Japan.
Canon, Mathatronics, Olivetti, SCM (Smith-Corona-Marchant), Sony, Toshiba, and Wang.
Four of these Beatles-era transistorised calculators were especially significant, including Toshiba’s "Toscal" BC-1411 calculator, which was remarkable in using an early form of Random Access Memory (RAM) built from separate circuit boards.
The same year emerged the ELKA 22 designed by Bulgaria’s Central Institute for Calculation Technologies and built at the Elektronika factory in Sofia.
Built like a T-64 tank and weighing around 8 kg, this was the first calculator in the world to include a square root function.
Cal Tech

All electronic calculators to this point had been bulky and heavy machines, costing more than many family cars of the period.
However in 1967, Texas Instruments released their landmark "Cal Tech" prototype, a calculator that could add, multiply, subtract, and divide, and print results to a paper tape while being compact enough to be held in the hand.
1970 -- The first battery-operated "hand-held" calculators are sold. Most are too large to actually be considered "pocket calculators," but they are far smaller than anything seen before.
In mid-1970, Sharp begins to sell the QT-8B which, by using rechargeable batteries, is a portable version of their desk-top QT-8.
Canon's "Pocketronic" sales begin in the Fall of 1970 in Japan and February 1971 in the USA. Canon used Texas Instruments' ICs and thermal printer. Selling for just under $400, the "Pocketronic" was a four function, hand-held, printing calculator, with the only display being the printed tape running out of the side of the machine. It looks much like the "Cal-Tech" prototype (see 1965). The unit was rechargeable, used a disposable tape cartridge, and weighed 1.8 lbs.
Later that year, Sharp begins to market the EL-8, a "small" hand-holdable calculator with four function calculating power, 8 numeric tubes for a display, and rechargeable batteries. Redesigned from the QT-8 series, the unit is smaller and weighs 1.7 lbs.


Wednesday, November 16, 2016

VIDEO GAME




VIDEO GAME

If you are a hardcore gamer, can you imagine your life without Nintendo Wii, Xbox and Playstation?
Absolutely not. Let us have a view how these video games were invented and how it evolved over some decades.

In October 1958, Physicist William Higinbotham created what is thought to be the first video game at a Brookhaven National Laboratory open house. It was a very simple tennis game.

It took Higinbotham only a couple of hours to conceive the idea of a tennis game, and only a few days to put together the basic pieces. Having worked on displays for radar systems and many other electronic devices, Higinbotham had no trouble designing the simple game display.

Higinbotham made some drawings, and blueprints were drawn up. Technician Robert Dvorak spent about two weeks building the device. After a little debugging, the first video game was ready for its debut. They called the game Tennis for Two.



Players could turn a knob to adjust the angle of the ball, and push a button to hit the ball towards the other player. As long as they pressed the button when the ball was in their court, players couldn’t actually miss the ball, but if they hit it at the wrong time or hit it at the wrong angle, the ball wouldn’t make it over the net. Balls that hit the ground would bounce like a real tennis ball.

Tennis for Two had none of the fancy graphics video games use today. The cathode ray tube display simply showed a side view of a tennis court represented by just two lines, one representing the ground and a one representing the net. The ball was just a dot that bounced back and forth. Players also had to keep score for themselves.

Later in 1961, Steve Russell, a student at the Massachusetts Institute of Technology (MIT), creates Spacewar, the first interactive computer game. It runs on a Digital PDP-1 mainframe computer, and the graphics are made up of ASCII text characters.

RUSSELL'S SPACEWAR


But the first true video game wouldn't be invented until 1967 when an engineer named Ralph H. Baer created the first prototype of “Brown Box”, the world's first video game console.
The “Brown Box” was a vacuum tube-circuit that could be connected to a television set and allowed two users to control cubes that chased each other on the screen. 
The “Brown Box” was licensed to Magnavox, which released the system as the Magnavox Odyssey in 1972.



Baer, often known as the “Father of Video Games," was the first person to create a system that transformed electronic signals into pictures on a television screen via a raster pattern…or what we now know as a video game.
The original Magnavox Odyssey featured a few simple games, such as a chase game, checkers, and a shooting game using a rifle peripheral device. The system came with two paddle controllers, as well as a few other accessories usually associated with board games. It was a huge success, selling over 700,000 units in its first three years of production.

MAGNAVOX ODYSSEY

But these consoles are a very recent addition to the list of video games-related technologies that have developed over the years.
Perhaps, you might have heard your parents mention ‘Atari’? Ask them, and they will tell you about Pong, a game originally created by a company called Atari Incorporated, way back in 1972 — 44 years ago.
Pong was a two-dimensional tennis game and its creator was a man called Allen Alcorn. In those days, you could not simply buy a game and bring it home and play. There were places where these games were installed and they were coin-operated (arcade games). This meant that you had to put a coin in the machine to play the game!

In 1972, Atari (founded by Nolan Bushnell, the godfather of gaming) became the first gaming company to really set the benchmark for a large-scale gaming community.
Atari not only developed their games in-house, they also created a whole new industry around the “arcade,” and in 1973, retailing at $1,095, Atari began to sell the first real electronic video game Pong, and arcade machines began emerging in bars, bowling alleys and shopping malls around the world.
In 1975, Atari's Pong is released with help from Sears Roebuck, which finances the production of 150,000 units. It becomes the hottest selling Christmas present. Sears sells the product exclusively, with the Sears Tele-Games logo.
Gunfight, the first "computer" game is released. It is the first game to use a microprocessor instead of hardwired solid-state circuits.
In 1977, Atari introduces its first cartridge-based home video system called the Video Computer System which later becomes known as the Atari 2600. It retails for $249.95.
ATARI 2600

When it was released, the Atari VCS was only designed to play 10 simple challenge games, such as Pong, Outlaw and Tank. However, the console included an external ROM slot where game cartridges could be plugged in; the potential was quickly discovered by programmers around the world, who created games far outperforming the console’s original designed.
The integration of the microprocessor also led to the release of Space Invaders for the Atari VCS in 1980, signifying a new era of gaming — and sales: Atari 2600 sales shot up to 2 million units in 1980.
As home and arcade gaming boomed, so too did the development of the gaming community. The late 1970s and early 1980s saw the release of hobbyist magazines such as Creative Computing (1974), Computer and Video Games (1981) and Computer Gaming World (1981). These magazines created a sense of community, and offered a channel by which gamers could engage.
Nintendo, the company which eventually became a major player in the video gaming industry for the next three decades, delivered their first series of video game console from 1977 to 1979. The Color TV Game Series were only for sale in Japan. These consoles essentially followed in the footsteps of Atari and featured Pong-style games.
Once again, there were a few newcomers to the market but they were met with limited success. Bally Astrocade came about in 1977 and was celebrated for its superior graphic capabilities. For some reason, it did not last long. Mattel introduced its Intellivision console in 1979, which actually intimidated Atari 2600 with its exceptional capabilities.
The golden age of video gaming has arrived! With progressively advanced gaming technology,the 1980s was a period of genre innovation when the industry began experimenting with non-Pong games like fighting, platform, adventure and RPG games.
 It is also this era that we saw the release of all-time classic games such as Pac-man (1980), Mario Bros (1983), The Legend of Zelda (1986), Final Fantasy (1987), Golden Axe (1988), etc.
There was also a major shift from dedicated consoles (with built-in games) to cartridge-based video game systems. In the first few years of 1990s, there is a notable shift in the medium used for storing games from cartridges to compact discs.
There were increased capacities for video gaming, prompting as well a transition of 2D graphics to that of 3D. The first CD console was launched by Philips (1991) – the CD-i.
In 1992, NEC TurboGrafx-16 was upgraded to the TurboGrafx-CD to meet the demands of CD-based consoles. But again, it lost itself to Sega Genesis/MegaDrive with its latest add-on, the Sega CD.
The current generation of video game console only has room for three major competitors: Xbox 360, Sony Playstation 3 and Nintendo Wii. With full 1080p HD graphics for both the Xbox 360 and Playstation 3, and Wii’s innovative remote for sensing 3D movements, it seems that video gaming had indeed came a long, long way.